Laboratory-on-a-chip’ devices could dramatically reduce COVID-19 detection times

Furthermore, the integration of biosensors with different devices would help to reduce the risk of the potential future waves/peaks of COVID-19. For instance, linking an appropriate biosensor to smartphones has the potential to increase the speed and reliability of the ‘contract tracing’ technique.

D Amir Keshmiri, from The University of Manchester, said: “This new competitive numerical platform simulates the performance of these specific devices in different design and operating conditions, which in turn will broaden our insight into the biological species manipulation in order to improve the efficiency of the existing designs.

“While developing an effective vaccine can take months up to years, detection of infected individuals is at the forefront of controlling the situation and a crucial tool in the ‘Contract Tracing’ strategy, currently in use in the UK and most other countries. ‘Time’ is a key parameter in containing highly pathogenic diseases and defeating a pandemic.

“These lab-on-a-chip devices are suitable for daily tests and are user-friendly, meaning no laboratory facilities are needed. These features make them a favourable real-time detection system, however, designing a reliable one is still very challenging and time-consuming.”

At The University of Manchester, our people are working together and with partners from across society to understand coronavirus (COVID-19) and its wide-ranging impacts on our lives.

Researchers, teachers, students and professional service staff are combining their knowledge to contribute to the local, national and international response to the disease.

Source: University of Manchester

Leave a Reply

Your email address will not be published. Required fields are marked *